
AniMatrix: A Matrix-Based Visualization of
Software Evolution
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Abstract—Software designs are ever changing to adapt to new
environments and requirements. Tracking and understanding
changes in modules and relationships in a software project is
difficult, but even more so when the software goes through several
types of changes. The typical complexity and size of software
also makes it harder to grasp software evolution patterns. In
this paper, we present an interactive matrix-based visualization
technique that, combined with animation, depicts how software
designs evolve. For example, it shows which new modules
and couplings are added and removed over time. Our generic
visualization supports dynamic and weighted digraphs and is
applied in the context of software evolution. Analyzing source
code changes is important to determine the software’s structural
organization and identify quality issues over time. To demonstrate
our approach, we explore open-source repositories and discuss
some of our findings regarding these evolving software designs.

I. INTRODUCTION

Information is a critical element of our modern society,
and its value is of great importance as its analysis may help
discover hidden trends, unexpected relationships, properties
or patterns in data. Data often need to be understood from
multiple perspectives and may have many forms, e.g., they can
be very structured or semi-structured, hierarchical or multi-
dimensional. Due to size and complexity, understanding even
just a part of this data is often a challenging task, and mistakes
may lead to taking decisions affecting people’s lives.

Networks (graphs) are a commonly used data structure
that can model several real-world systems, such as financial
transactions and social interactions. However, these networks
are complex and difficult to grasp, even more so as they change
over time, and there are growing needs in understanding
static and evolving networks. Common techniques to visualize
such networks include Small Multiples [1], animation [2] and
glyphs [3].

Visualizing dynamic networks is useful in many domains,
e.g., to track financial transactions, the forming of social com-
munities or the evolution of software. In particular, software
has to change continuously over time or it becomes less
useful. Despite advances in understanding the evolution of
software, its visualization may provide software engineers and
researchers with more insight about dynamic processes that
affect modules in software, and the propagation of changes.
Software engineers still need tools to help answer important
questions such as how did the couplings evolve following the
introduction of a pattern? How were the modules restructured
during a refactoring phase?

There can be various types of changes affecting software,
but complex changes are difficult to describe and may be
insufficiently documented in repository logs. Managing and
tracking the evolution of these changes is important to achiev-
ing good designs and reducing high maintenance costs, and
thus more software evolution tools are needed [4].

Current approaches for visualizing evolving software typ-
ically use node-link diagrams, which can have cluttering
issues. To help address this problem, the visualization that we
present in this paper offers an interactive way of exploring
evolving software, is scalable and also supports weighted
digraphs with multiple types of nodes (multi-modal) and edges
(multi-relational). Our contributions are (1) a taxonomy of
visualization techniques for dynamic networks, (2) an inter-
active prototype (AniMatrix) that allows exploring the change
histories of software, and (3) a demonstration of our approach
on three open-source software repositories.

II. RELATED WORK

Various techniques of visualizing dynamic graphs and
changing software have been explored and are discussed in
this section.

A. Dynamic network visualization

Small multiples [1] can be adapted to work for any visual-
ization technique to show changes in a graph, by juxtaposing
thumbnail images that represent the graph at some point in
time. However, they take up more space, making it difficult to
track changes over multiple time steps. Difference maps [5],
on the contrary, use highlighting to show differences between
two time steps, reducing the effort to track changes. They also
allow hiding intermediate events, which can be useful if these
events are not critical or can be discarded. However, in the case
of exploring unknown data, multiple difference maps may be
needed to show the complete evolution steps.

Animation also typically uses highlighting, but the user may
need to drag back and forth to properly understand the under-
lying data, which can take time. On the one hand, animation
takes time to play, which may affect the performance of tasks.
On the other hand, animation can help to reduce error rates
[6]. Indeed, objects may move due to changes over time and
animation may help in tracking them. Algorithms have been
designed to try to facilitate the tracking of nodes over time,



but results obtained so far have not yielded simple conclusions
about the effects of preserving the mental map [7].

Static representations were found to be more suitable in
some cases (e.g., [6], [8]), although animation was also shown
to have benefits (e.g., [9], [10]). Moreover, the integration
of animation in a hybrid visualization resulted in increased
performance in exploration tasks of dynamic networks [11].

Node-link diagrams have limitations when compared to
matrices. Generally, area and color can help to track evolution
in representations [12]. However, the tracking of changes may
be easier in matrix views, as the area allocated to showing
edges (matrix cells) is larger than in node-link views. Although
node-link diagrams may facilitate the finding of paths [13],
matrices are generally more scalable.

Glyphs (i.e. charts or a representation showing small infor-
mation summaries) have also been used (e.g., [3], [14]). These
glyphs can be used in combination with other visualizations
(such as node-link diagrams) to show the evolution of dimen-
sions. However, there is limited space where edges are and so
only a few time steps can be shown there as glyphs. Moreover,
existing techniques do not focus on showing the evolution of
multiple types of edges.

B. Software visualization

Visualization techniques may help developers gain insight
about static (at one version of the software), dynamic (at
run-time) or evolutionary (over several versions) aspects of
source code [15]. Some static visualization approaches may
be extended to visualize changing aspects as well. Lattix
[16] uses a matrix-based representation to visualize and in-
teract with the layered structure of source code, in addition
to showing module dependencies. Package Fingerprints [17]
similarly allow visualizing incoming and outgoing couplings
to encapsulated packages using a matrix-inspired approach.
TreeMatrix [18] combines node-link and matrices to depict
high level and low level structures of source code, along
with their relationships. Abuthawabeh et al. (2013) [19] found
that both matrix and parallel node-link visualizations were
similarly performant in showing multiple types of couplings.
Although these approaches are useful to show the structure
of the design at some points in time, they do not focus on
representing how the design evolves over time.

Collberg et al. (2003) [20] proposed one of the first evolving
software visualization based on multiple node-link views.
YARN [21] can represent evolving couplings using animated
node-link diagrams, but only supports high level abstractions
(packages). Langelier et al. (2008) [22] uses an animated 3D
model to show the evolving hierarchical structure of software,
as well as changes in terms of metrics. IHVis [23] allows
visualizing the evolution of design structures using node-link
diagrams, but may have scalability issues and cannot show the
evolution of multiple types of couplings.

In summary, current visualizations focus on various aspects,
but in spite of their potential benefits, matrix-based visual-
izations are still not adapted to show evolving software. In
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Fig. 1. A taxonomy of visualization techniques for dynamic graphs. The
same dynamic graph is shown using four techniques, and each approach is
depicted using both node-link and matrix representations. The weights of the
edges correspond to the lines’ thickness (node-link view) or the color darkness
(matrix view). When the differences are highlighted (difference or animation
views), the color indicates the type of change, either removal (red), addition
(green), modified (blue) or unchanged (light gray). a. Small Multiples. A
small representation is used at each of the four time steps. (Note that the
time slices could also be shown on top of each other in 3D.) b. Difference
Maps. The changes between time steps 1 and 4 are depicted using colors. c.
Animation. A user may use a dragging gesture (or a scroll bar) to navigate
in time. In this case, the changes between time steps 2 and 3 (i.e. one
transition) are interpolated. d. Glyphs. Charts, time series or another graphical
representation can be used to show small summaries of the evolution of edges.

the next section, we explore possibilities of visualizing such
changing structures.

III. TAXONOMY

There are different visualization techniques that can be
used to show evolving networks. In this section, we present
a taxonomy of dynamic graph visualizations. We used this
classification to organize visualization possibilities (a similar
strategy has been used in, e.g., [11], [24], [25]). In contrast
to previous work, we discuss techniques to visualize evolving
networks having multiple types of nodes and edges, focusing
on both node-link and matrix views.

Figure 1 illustrates the main approaches that can be used
to visualize the same dynamic graph. The techniques are
generic and can be used to visualize any weighted dynamic
digraph, although undirected graphs are depicted to simplify
the illustrations. Nodes in node-link diagrams may also be laid
out in different ways, including radial layouts [26] or parallel
vertical axes.
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Fig. 2. Smooth transitions showing graph changes between time steps 2 to 4 in a matrix-based visualization using a single-step animation (1) or a staged
(multi-step) animation (2). Note that the network shown here is taken from the taxonomy (Figure 1) and animated changes occur in a left-to-right order. In
the first case, three transitions are depicted (i.e. 1-2; 2-3; 3-4) and all types of changes are aggregated and shown at the same time. In the second case, a
staged animation is used to gradually show the evolution of multiple types of changes. The animation steps occur in the order detailed below. a. Removal
step. Nodes and edges fade out from their current color to red. b. Moving step. Elements move to their new positions (in case of reordering). c. Modification
step. Elements are modified (e.g., in terms of edge weights) and a cell becomes darker (stronger link) or lighter (weaker link) over time. d. Addition step.
Added nodes and edges gradually appear, fading in from green to their target color.

Small multiples (1.a) can support a wide range of techniques
and layouts, but require the user to manually compare the
visualizations at different time steps, and take up more space.
In contrast, difference maps (1.b) highlight the changes be-
tween two time steps. However, they may also hide potentially
critical intermediate states. Animations (1.c) have shown to
be useful in facilitating the understanding of changes and
are associated with lower error rates, but may be slower and
the user often need to manually control the animation speed.
Glyphs (1.d) can show the evolution of edges by drawing small
graphics summarizing the changes. However, the available
space in such visualizations is limited, making it difficult to
draw glyphs inside edges of node-link diagrams, for example.

In software engineering, files would generally be depicted
as nodes, and edges would represent the dependencies. A soft-
ware network may have several types of nodes (e.g., classes,
interfaces) and edges (e.g., inheritance, method invocations).
However, not all visualization techniques may support showing
the evolution of multiple types of edges, although some could
be extended to support these types of networks. For instance,
to visualize an unweighted graph with multiple types of edges,
one way would be to map colors to edge types instead of
edge weights. However, in the case of a weighted graph with
multiple types of edges, another visual encoding must be used,
and one that is non-conflicting. Extended glyphs, such as
stacked bar charts, multiple line charts, spider webs or even
parallel coordinates could be used in place of classical bar
charts to show the evolution of multiple types of edges. The
combination of animation and bar charts, for example, could
achieve similar objectives (i.e. animating the glyphs).

Moreover, there might be many types of changes to ani-
mate simultaneously, and there are different approaches, as

illustrated in Figure 2. However, node positions may change
over time, making it harder to track moving objects. To avoid
this potential issue, mental map preservation algorithms aim
at minimizing node movements over time, because on the one
hand, too many movements make it harder to track nodes
and on the other hand, very few movement may not help
in revealing related nodes and clusters. Indeed, if reordering
is not computed at all (or insufficiently), a software module
could appear as part of a cluster while it is no longer the
case. However, possibly because of this trade-off, it is unclear
whether and how mental map preservation algorithms should
be used [7].

Staged animations can also help in tracking several types of
changes [27]. In some cases, understanding the full evolution
of the data may not be needed, and so simply interpolating
between two time steps (thus hiding intermediate steps) could
be sufficient. On the contrary, if a finer level of details is
required to better understand evolutionary aspects, multiple
transitions steps can be used instead. In this case, the evolution
timeline could be first divided by the number of time steps,
and then further divided for each animation step.

Based on these possibilities, to help users interactively
explore large software and change histories, we implemented
a matrix-based visualization. Our prototype allows exploring
software by animating its matrix representation in a flexible
manner. In the next section, we describe our visual approach
to explore evolving software.

IV. SOFTWARE EVOLUTION DIMENSIONS

Software is developed using various languages and tech-
nologies, and designs can be difficult to assess as several



patterns and structures may affect how changes propagate over
time. AniMatrix aims to help answering questions such as:

• At which points in time is the design more (or less)
stable?

• When are new design elements inserted and do they
evolve in a certain way?

• Were there any minor or major reorganizations?
In the remaining of this section, we describe dimensions
concerning evolving software, along with the corresponding
visual cues that could be observed in an animated matrix-based
visualization (such as AniMatrix). We focus on observations
that can help understand relationships, structures, confirm or
suggest hypotheses, and that may lead to insight [28].

A. Usages

Coupling is widely recognized as a key measure to assess
the quality of software designs, and a number of metrics have
been proposed in the literature. A design in which there are
many highly coupled modules tend to be rigid and harder
to reuse and maintain. Dependencies of various types may
remain constant, increase, decrease or fluctuate (i.e. increase
and decrease) over time. In the following subsections, we
present observations that could be found in software designs,
based on such dependencies.

1) Central Element: Central elements have relatively strong
incoming couplings from several other classes. Over time, it
can lead to a Shotgun Surgery anti-pattern, i.e. one change
made to the central element could affect several other el-
ements. Indeed, if incoming couplings of an element are
constantly increasing, it could indicate a growing need to
restructure it. In our visualization, these central elements
tend to have multiple filled (and dark-colored) cells in their
corresponding columns. Moreover, the addition of edges are
shown as fading in, while removed edges fade out.

2) Lazy Element: A Lazy Element is the opposite of a
Central Element in that a heavily dependent element (as in a
Lazy Class) has many outgoing links. Thus, the corresponding
matrix rows would be gradually filled with multiple (dark-
colored) cells.

3) Reused Abstraction: Software abstractions are created,
but may not be used for some time. These unused gener-
alizations can introduce unnecessary complexity, making it
harder to refactor or find and fix problems. On the other hand,
abstractions that are reused over time are potentially valuable
investments. In a matrix view, rarely used abstractions would
contain several empty cells in their corresponding columns.

4) Related Elements: Two modules which are increas-
ingly (or decreasingly) dependent on each other, will develop
stronger (or weaker) links. Visually, the corresponding cells
would get darker over time to indicate stronger relationships.
Also, related modules will have a tendency to move closer
to each other as if they were part of the same group (or
cluster), while unrelated modules will move apart. Such groups
of modules should generally be part of the same unit of
development (e.g., to facilitate testing). In some cases, cycles
may appear, i.e. two elements may be dependent on each other

at some point. These elements would appear on each side of
the matrix diagonal.

B. Design Stability

Several design patterns aim to enhance the stability of a
design, so that changes are localized and have small impact
on unrelated classes to reduce modification costs. Furthermore,
the increase in code smells [29] can be a sign of a degrading
design. A visual tool could help to check software evolution
patterns and prevent issues. Figure 3 illustrates how these
stability aspects would appear in a matrix-based view.
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Fig. 3. Visualization of stability aspects of an evolving design. a. Protected
Variations. An application of Protected Variations is typically composed of
three parts. An interface I is first introduced at some point in time. Then,
elements (e1 and e2) implement interface I. Finally, a client class c relies
on the stable interface I, and couplings (if any) to the internal elements are
being removed. b. Encapsulation. Similarly, an intermediary class F (such
as a Facade) may isolate unstable elements from external clients to preserve
the design’s stability. At some point in time, a class F encapsulates some
elements (e1 and e2). A new client class c may then no longer need to refer
to these encapsulated elements and thus depend on F instead.

1) Interface Couplings: Increasing couplings to interfaces
(stable couplings) could indicate a shift to a more stable de-
sign structure, while decreasing stable couplings may suggest
design instabilities. For instance, following the introduction of
a new interface design pattern, client classes will often refer
to the interface shortly after its introduction to benefit from it.
In this case, the column associated with the interface would
become increasingly filled with cells.

2) Protected Variations: Increasing couplings to concrete
implementations of interfaces (i.e. clients directly referring to
classes that implement interfaces or extended interfaces) are a
sign of increased instability, as the clients rely on unstable
parts. Protected Variations [30], as implemented in design
patterns (e.g., Strategy, Iterator), hide unstable elements from
clients to protect them from changes using a stable interface.
Hence, clients should only refer to that interface, to favor
stable couplings and to avoid unstable ones (Figure 3.a).

3) Encapsulation: As per information hiding, the intro-
duction of an intermediary class (such as a Facade) may
help protect external clients from changes in encapsulated
elements (Figure 3.b). Clients relying on a Facade should thus
have reduced couplings toward the encapsulated elements, as
the clients can refer to the intermediate element instead. In
particular, if the outgoing couplings of the intermediary class



are creational ones, this would suggest a behavior similar to
that of a Factory (essentially hiding the construction logic).

C. Restructurings

Major or sudden fluctuations (i.e. several changes made
during the same period of time) may be caused by significant
design changes or restructurings. A lot of changes could also
be caused by a hierarchical reorganization of the design (such
as changing packages), when unused parts are removed (such
as dead code) or after code cleanings.

1) Big Bang: Often at the beginning of a project but
also at other stages, multiple types of changes can occur
simultaneously during a short period of time. These changes
usually pop up visually as several elements are added and
modified. This could be caused, for example, by structural
changes (as in package reorganizations) or by committing a
significant piece of work just before a release.

2) Massive Abstractions: Sudden insertions (or removals)
of multiple interfaces or abstract classes may suggest that
the design is being reworked, e.g., design patterns could be
gradually incorporated. In particular, the insertion (or removal)
of abstract classes is often associated with increases (or
decreases) in reusability, as it is a key role played by these
types of software elements. Similarly, increases (or changes)
in couplings might influence reusability aspects. These can be
spotted relatively quickly by specifically watching changes in
abstract classes and extension couplings.

3) Renaming: Classes might be renamed at some point or
be moved to another package, as responsabilities are reas-
signed. Since their namespaces would change, the elements
would first appear to be removed, then re-added shortly after
in a second step, possibly at different locations. The renamed
elements might also be refactored at the same time.

4) Code Cleaning: Code cleaning and removal of dead
code may happen just before a release or during refactorings,
and suggest a gradual stabilization of the design. Some matrix
cells and elements are typically removed during a cleaning
phase and are not added back (these fading out elements
naturally pop out).

The observations described in this section are organized
in Table I, which may further help in analyzing software
evolution dimensions 1. Our tool shows the history of changes
and the user can time travel and focus on specific aspects (e.g.,
added interfaces, node movements). Further investigations can
reveal the reasons for these modifications and their effects on
the design.

V. VISUALIZATION

Software designs can naturally be modelled using multi-
modal and multi-relational networks. As shown in our tax-
onomy, an approach to visualize the evolution of software
would be to juxtapose small multiples, i.e. one for each
version of the software, as in [20]. However, in this case,
only a limited number of snapshots can be shown on the

1 This categorization table illustrates how evolving software designs may
be explored visually but could be expanded or tailored to other contexts.

screen and additional interaction techniques are required to
browse large histories. Some types of changes are also harder
to understand in such representations, as the user needs to
manually compare versions. Animated node-link diagrams
were used in previous work (e.g., [11], [21], [31]) but such
approaches may have cluttering issues. In contrast, matrix-
based visualizations have less cluttering, are scalable and sup-
port dense networks (as demonstrated in, e.g., [13], [32]). An
overview of our interactive prototype is presented in Figure 4.
AniMatrix allows watching software change histories using a
matrix-based visualization and multi-step animations. Thus, it
allocates space to show connections among software modules,
making it easier to track, e.g., changes in couplings over
time. To facilitate the understanding of changes, interaction
techniques, such as filtering and zooming are also supported.

A. Interaction

We implemented interaction techniques to support a dy-
namic analysis of software 2. A history navigator is initially
shown to the user (Figure 5). This interactive timeline covers
all commits made by the developers over time. The user can
zoom in or out using the mouse wheel and pan around by
dragging the mouse or by using the scroll bar slider. Hovering
over a revision shows more details, such as the full date of
the commit, author, and log message.

Between two consecutives commits, a multi-step animated
transition is created (as previously described in Figure 2). The
user can move in time (backward or forward) inside that multi-
step animation by moving the mouse cursor or by pressing the
left and right keys. The current step of the animation (e.g.,
addition of nodes and edges, movement of nodes, removal of
nodes and edges) is highlighted in the history navigator. At
the same time, the matrix view is updated as the user moves
around to highlight the addition of elements (increasing size, in
green color), the removal of elements (decreasing size, in red
color) or node movements (in orange). Changes with respect
to edges are also shown. In this case, the borders of the matrix
cells are colored in blue when they are changing, and the cells
are gradually colored in varying tones of gray (using darker
grays if weights are greater). The user can optionally see the
counts (i.e. the weights) for each edge type (in the detailed
view) or the total count for all types (i.e. the aggregated value).

Nodes can also be of several types (classes, abstract classes
or interfaces) as shown in Figure 6 3. Hovering, selecting and
viewing source code are supported. Finally, the user may filter
or hide elements, by searching for their names or filtering by
their types. Whenever one or several filters are applied (e.g.,
all interfaces named Shape or implementation couplings), only
the corresponding changes in the animation steps are shown
in the history navigator. So, a user may quickly see where a

2A video showing the tool and the interaction possibilities is available
online at http://ref.rufiange.com/animatrix2014.

3There are reasons that motivated our choices. Rectangles and ellipses are
also commonly used in UML to represent classes and interfaces. Abstract
classes and interfaces are drawn using dashed borders, as they cannot be
instantiated, in contrast to classes (which are also shown in darker color).

http://ref.rufiange.com/animatrix2014


Fig. 4. Overview of our AniMatrix prototype, comprising an interactive and dynamic matrix view, and a history navigator. The implemented controls enable
the user to move back and forth in time and in space, as well as search and filter elements. Zooming and panning is supported in the matrix and navigator
views. In this screenshot, a matrix cell is hovered (shown in purple, along with a tooltip), and some elements are selected (shown in orange).

TABLE I
OBSERVATIONS CONCERNING EVOLVING SOFTWARE DESIGNS AND VISUAL REPRESENTATIONS.

Category Observation Visual pattern

Usages Central Element -Matching column (vertical direction) is increasingly filled with cells.
Lazy Element -Matching row (horizontal direction) is increasingly filled with cells.
Reused Abstraction -An abstraction with many incoming couplings (i.e. a column with several non-empty and dark-colored cells) suggests

a reused abstraction. In contrast, rarely used software abstractions only have a few non-empty (or light-colored) cells.
Related Elements -Related elements tend to get closer to each other over time, while the distance between unrelated elements increases.

Furthermore, elements placed on each side of the matrix diagonal are generally interdependent.

Design Stability Interface Couplings -Increasing couplings toward interfaces or extensions of interfaces are signs of increased stability (e.g., corresponding
columns are increasingly filled with cells).

Protected Variations -Clients increasingly rely on interfaces and not on internal implementations. Thus, couplings toward concrete implemen-
tations decrease (Figure 3.a).

Encapsulation -An intermediary class has couplings toward encapsulated elements. Client classes refer to the intermediate element, and
their couplings toward the encapsulated elements decrease (Figure 3.b).

Restructurings Big Bang -Many changes occur during a small time span (e.g., classes and links are added and removed during a reorganization).
Massive Abstractions -Several insertions of abstract classes, interfaces or extension couplings in a short amount of time.
Renaming -The same elements are removed then re-added shortly after.
Code Cleaning -Many unused elements (i.e. with several empty cells at their matching columns) are definitely removed at some point.



Fig. 5. History Navigator. The changes between revisions 82 and 83 are
grouped by types and shown with distinct colors: removal of nodes and edges
(N-, E-), node movements (Mvt), addition of nodes and edges (N+, E+) and
changes in edges’ weights (E). The interactive orange line indicates the current
position in time and also the active animation step. The displayed changes
take under account any filters that could have been applied. Also, the matched
elements in the active animation step are gradually animated and highlighted
in orange in the matrix view to make them easier to track.
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Fig. 6. Staged animations used in our matrix-based visualization can
show changes concerning multiple types of nodes and edges. Node types
include classes (gray rectangles), abstract classes (white rectangles with
dashed borders) and interfaces (cyan ellipses with dashed borders). Edge types
represent couplings among these software elements and include references
(importations and declarations) (R), extensions (E), creations (constructor
calls) (C) and implementations (I).

class is changed over time or when specific types of couplings
are created. A user may find pattern occurrences by searching
for their names, and can then further check how the instances
evolve over time.

B. Implementation

We implemented our prototype in Java, using the Java
OpenGL wrapper library. Dynamic networks modelling the
evolution of these software projects were extracted from
source code repositories using our framework (IHVis) [23]. As
software elements are increasingly interconnected, cliques may
appear at some point as a result of the reordering of the matrix.
Also, there is a trade-off between the degree of generated
movement on the visualization and the potential visibility of
such cliques. So, we let the user decide when she/he wants
to perform reordering. There are several matrix reordering
algorithms [33] but no one is clearly better in the context
of evolving software. Thus, we used a barycenter algorithm
that iteratively places interconnected nodes near each other
(as described in [34]). Furthermore, the color scales used in
our visualization are interpolated based on ColorBrewer [35].

VI. SOFTWARE EXPLORATION

In this section, we present some of our findings, dis-
covered using AniMatrix on three Java software projects
(Table II). Hexel (http://github.com/es92/Hexel) is a voxel-
based game allowing players to explore a 3D world. EasyNote
(http://github.com/rui1989/EasyNote) is a note taking applica-
tion. Finally, Buddi (http://buddi.digitalcave.ca) is a personal
finance software.

TABLE II
PROJECTS THAT WERE EXPLORED USING ANIMATRIX.

Project # Commits # Files Size Dates

EasyNote 131 141 1.6 MB 2013-2014
Hexel 134 153 2.3 MB 2013-2014
Buddi 1273 290 1.6 MB 2006-2013

A. EasyNote

1) Usages: At the beginning of the project, MainPanel
is the sole Lazy Element and thus interacts with several
other classes to display and process user input. Couplings
are increasing over time, e.g., at revisions 21 and 56 (Fig-
ure 7). As shown in Figure 8.a, a few central elements are
also visible (e.g., Property, SoundFactory, SoundTheme) and
remain central as the project evolve. There are only a few
abstract classes and they are not used by several elements
(such as AbstractNoteDAO, AbstractDocument). In fact, at
revision 103, AbstractNoteDAO is refactored and is no longer
abstract (“Change AbstractNoteDAO to DocumentNoteDAO
and make it concrete”), possibly because this part of the
design was unnecessary abstract and not reused a lot. As can
be expected, unit tests are related to the tested classes (e.g.,
WorksheetUnitTests ->Worksheet).

2) Design Stability: Despite its name, SoundFactory (pre-
viously found to be a central element) does not focus on
creating complex objects, but rather facilitates the access to
sound resources. We discovered this by comparing this visual
occurrence to the theoretical case illustrated in Figure 3.b, and
also by checking the source code. In particular, SoundFactory
encapsulates the Property class that is used by several other
clients. Classes rely on Property as it is generally stable and
thus can be reused without causing too much instabilities.

There are also Data Access Objects (DAO) realizing the
AbstractNoteDAO abstraction (e.g., ArticleNoteDAO) that may
prevent client classes from knowing how elements are actually
stored in the database. However, as we observed, couplings
toward concrete DAO classes are present and sometimes
increase (e.g., at revision 19), which might cause issues at
some point. The use of an intermediary class (such as a
Factory) could have been an option to reducing the number of
unstable couplings to concrete DAO classes.

A few interfaces are initially present (e.g., Note, Document)
and some others are added between revisions 57 and 65 (e.g.,
AuthorsAware, CreatedTimeAware, LastUpdatedTimeAware),
as new functionality regarding worksheet data is added (“Add



Fig. 7. EasyNote. Evolution of MainPanel’s couplings (a Lazy Element) between revisions 21 (left) and 56 (right).

Fig. 8. a. Central Elements in EasyNote. SoundFactory is not really a Factory
instance as it does not encapsulates Property, which is reused by several other
classes (revision 102). b. Different kinds of Rules classes are placed close to
each other in Hexel (revision 54). c. In Buddi, the central element Strings is
renamed and refactored to Translate (revision 42).

comment field to worksheet”). Couplings toward these stable
interfaces slowly increase over time, e.g., between MainPanel
and the Document interface at revision 110. Thus, the panel
component does not need to know about the concrete docu-
ment types.

3) Restructurings: There are several moving objects at,
e.g., revision 49 as data model classes are reorganized (“Move
book and article entities to be under entity package”). At
revision 119, there is a (small) Big Bang, in which test
cases (e.g., NoteCacheUnitTests, BookNoteDAOUnitTests, Ar-
ticleNoteDAOUnitTests) are moved around (“Refactoring of
cache and DAO layers”).

B. Hexel

1) Usages: Core utility elements, such as vectors (Vector2i,
Vector3i) and blocks classes (e.g., Block) are central in this
project. Block is abstract and this abstraction is reused at
several places in this block-based game. On the other hand,
PagedCache and FreqBlockRule are rarely reused abstractions
but they seem to exist for very specific needs. Also, different
kinds of Rules (e.g., HealRule, LightRule, WaterfallRule) are
related and often placed near each other (Figure 8.b).

2) Design Stability: There are some interfaces in this
project but except for a few reorganizations most of them are
added during the initial commit, which suggests a (relatively)
stable design structure. For instance, Wanderer and Player are
concrete implementations of the Movable interface, and de-
scribe how they should be moved in space. Using filterings, we
discover that ThingSimulator is essentially the only class that
directly refers to the Movable interface over time (Figure 9).
Until revision 92, ThingSimulator did not know about the
concrete implementations of Movable. However, when the Hu-
manoid class (implementing Movable) is introduced, Wanderer
is refactored and now extends Humanoid. So, the coupling
from Wanderer to Movable is removed, and the Humanoid
class now refers to Movable instead. Also, ThingSimulator is
now coupled to the Player class. Checking the source code
of ThingSimulator, this coupling (that should be avoided) is
caused by the casting of objects to Player (“if (t instanceof
Player)”).

At revision 93, the Controllable interface is inserted, and



a number of clients refer to it (such as Engine, Renderer,
GameOverlay). However, only the Player class implements
this interface and it does not change over time. So, this
suggests that the Controllable interface was preventively added
but is not used too much at this point.

Fig. 9. Hexel. At revision 72 (left), interfaces (e.g., Movable) are moved to
a new subpackage (Hexel.things.types). Then, as an example of a protected
variation, Movable has two concrete implementations (Wanderer and Player)
and one usage (ThingSimulator). Over some time, ThingSimulator is never
coupled to Wanderer nor Player, and rely on the stable interface Movable.
However, at some point (at revision 92), ThingSimulator becomes coupled to
the Player class.

3) Restructurings: Between revisions 50 and 58, some
elements are restructured, and also several others are added to
support terrain generation features in a new terrainGenerator
package. At revision 72, some interfaces (e.g., Movable,
InventoryOwner, Volumetric) are moved to a new subpackage
(Hexel.things.types) as shown in Figure 9. Finally, WaterFall-
Rule and WaterSpreadRule are removed, and several links
involving BlockRules (derived from the Block central element)
are also changed for a ”simplified and improved water logic”
(revision 97).

C. Buddi

1) Usages: Central elements include Strings and Log
classes at the initial commit. Strings (which is renamed to
Translate later) along with TranslateKeys are used by several
other elements over the duration of the project. PrefsInstance
is a Singleton class managing the application’s settings and it
is also reused several times.

2) Design Stability: PrefsPackageImpl has increased cou-
plings toward several interfaces, especially at revision 296.

Some of these interfaces are in fact encapsulating a DataModel
(for example, the Intervals Interface is implemented by the
IntervalsImpl class), based on the Eclipse Modeling Frame-
work Project (EMF). At revision 334, a “plugin architecture”
is refactored, and a Factory instance (PluginFactory) plays a
role in the new design structure (Figure 10). Some clients
classes using this Factory are ReportPanel and BuddiMenu
to access plug-in features from within the application’s main
menu. Other client classes are added over time (showing
the usefulness of this Factory), such as PreferencesDialog
at revision 336. Exploring the edge types and checking the
source code reveal that the Factory uses reflections (instead of
instantiating the objects).

Fig. 10. Buddi. PluginFactory is reworked at revision 334 and is responsible
for creating and initializing plug-ins. BuddiMenu and ReportPanel are initial
clients of that Factory, while others (e.g., PreferencesDialog) are added at
revision 336. These clients are not coupled to the encapsulated plug-ins (e.g.,
BuddiPanelPlugin) over time and refer solely to the Factory.

3) Restructurings: The central element Strings is renamed
and refactored to a Translate class at revision 42, causing many
small changes (Figure 8.c). At revision 112, some classes
are removed and then re-added (e.g., JTextFieldHint and
JDecimalLabel) as they are ”Re-arranged”. At revision 224,
some packages are “moved around to more accurately model
the MVC separation”. Finally, several abstract classes are
added at revision 710 (e.g., SourceImpl, BudgetCategoryType,
BudgetCategoryTypeImpl) to “rework the data model”.



VII. CONCLUSION AND FUTURE WORK

We introduced AniMatrix, an interactive and animated
matrix-based visualization that we used to explore evolving
software. We first presented a taxonomy of dynamic network
visualizations, along with a classification of observations con-
cerning changing software. We then used this classification to
analyze real-world software repositories. Modules with many
incoming couplings generally remained central as the software
evolved. Indeed, some functions (such as logging) are needed
by several classes and are often placed into separate elements
for reusability. We also discovered abstractions that were not
used a lot, or that were created and then removed later on as
the design evolved. Evolution patterns of software elements
and couplings suggested adequate applications of information
hiding principles in some cases but also revealed opportuni-
ties for improvement. AniMatrix was useful to browse large
change histories and also allowed to discover cases of restruc-
turings (such as package reorganizations). In future work, we
plan on supporting other types of changes as well as module
hierarchies. Interaction techniques, hybrid visualizations and
advanced filtering options could also improve the performance
of tasks, such as inspecting and evaluating patterns in evolving
software.
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